Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft
نویسندگان
چکیده
Using sensors that only measure the bearing angle and range of an aircraft, a Kalman filter is implemented to track the range, range rate, bearing, and bearing rate of a maneuvering aircraft with unknown varying accelerations. Simulations will demonstrate the tracking performance of the Kalman filter with single and multiple prediction steps between the measurement step. Then, a Kalman filter will be implemented with assumed correlated measurement and process noise.
منابع مشابه
A Modified Proportional Navigation Guidance for Range Estimation
In this paper, after defining pure proportional navigation guidance in the 3-dimensional state from a new point of view, range estimation for passive homing missiles isexplained. Modeling has been performed by using line of sight coordinates with a particulardefinition. To obtain convergent estimates of those state variables involved particularly inrange channel and unavailable from IR trackers...
متن کاملImplementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter
In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...
متن کاملTuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملImprovement of Navigation Accuracy using Tightly Coupled Kalman Filter
In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...
متن کامل